

RITSUMEIKAN
KEEP ON CHALLENGING, KEEP ON GROWING

音情報処理研究

Acoustics & Signal Processing Labs

立命館大学 情報理工学部 画像・音メディアコース 音情報処理研究室 (西浦研究室)

□快適な音場空間の構築を目指して

音情報処理研究室では、音響情報処理やデジタル信号処理を中心にメディアとしての音環境の解析・理解・ 再現・合成などの研究を行っています. 特に『3D立体音響再生』『オーディオスポット』『光レーザーマイクロ ホン』『知的音響センサー』『騒音抑圧・快音化』『アクティブノイズコントロール』など音響技術の実用化を 念頭に、豊かな社会基盤の形成に貢献できるよう研究を進めています。

教 授 : 西浦 敬信 講 師: 岩居健太 助 教:耿 毓庭 書:南井ゆかり 生: 博士課程生(6名)

修士課程生 (9名) 学部生 (9名)

□研究設備

オフィス (約120㎡), 第1スタジオ (約60㎡), 第2 スタジオ (約60㎡), 簡易音響防音室環境 (第1スタ ジオ内)、22.2chサラウンド実験環境(第1スタジオ 内), 空間シェアリング実験環境 (スポーツ健康コ モンズ内),レーザードップラー振動計,超指向性 スピーカ、リアルタイム信号処理装置、多チャンネ ル録再生システム、多様なマイクロホン・スピーカ

□最近3年間の研究状況

学術雑誌論文:11本掲載 国際会議発表:42本採択 学生等の学会受賞:6件受賞

競争的研究プロジェク

際感覚を重点的に養った上で社会へ輩出しております.

音に関する様々な研究テーマに挑戦しています。特に社会に役立つ人材を育成する

という観点から、音の技術者・研究者の育成のみならず、学生が研究指導を通じて主

体性・自主性・積極性を学べるよう、多数の対外的な活動(自身の研究成果を国内・ 国外で発表する機会、研究プロジェクトを通じて社会を実感する機会、共同研究企業

にてインターンとして実のある実習を体験する機会など)を提供できる研究室です。

プログラムも提供できる研究室です. なお院生は、M1において国内における国際会 議発表, M2修了までに海外における国際会議発表を最低1度は経験させ, 英語力や国

さらに意欲ある学生が、多数の刺激を受け個性豊かに成長できるよう、様々な教育

〒525-8577 滋賀県草津市野路東1-1-1

文部科学省科学研究費補助金(基盤研究 B):次世代ピンスポットオーディオシステムの基盤創成と体系化(2023年~) 文部科学省科学研究費補助金(基盤研究 A):音の身体性が心理情報処理に及ぼす影響の基盤解明とその応用(2021年~) 文部科学省科学研究費補助金(基盤研究 B) :音像ホログラフィを用いた音響テレイグジスタンス技術の基盤開発 (2021年~) 文部科学省科学研究費基金助成金挑戦的研究(萌芽): 古文書解読熟練者の研究行為から抽出する音声認識電子テキストアーカイブ(2021年~) 文部科学省科学研究費基金助成金(若手研究):音響エコー低減および雑音抑圧のためのマルチタスク適応フィルタの研究(2021年~) Ritsumeikan Advanced Research Academy (RARA):音響 × 心理イノベーションが共創するユニバーサルサウンドスケープ社会の実現 (2022年~) 立命館大学拠点形成型R-GIRO研究プログラム:記号創発システム科学創成:実世界人工知能と次世代共生社会の学術融合研究拠点 (2022年~)

]研究交流 (50音順)

ジャトー、清水建設、ダイキン工業、鉄道総研、 バリューリンクテクノロジー TOA. 産総研、

口協力機関

立命館大学 情報理工学部 画像・音メディアコース 音情報処理研究室(クリエーションコア5階) TEL&FAX 077-561-5075 (Ex.6735)

三菱電機エンジニアリング

□主な研究テーマ

REEP ON CHALLENGING, KEEP ON GROWING
音情報処理研究室
Acoustics & Signal Processing Labs

3D立体音響再生 臨場感あふれる高臨場3D立体音響空間の実現を目指して、西浦研究室では2017年10月よりフルサラウンド実

験環境を新たに構築しました. この環境では、すでに映画館で導入されている Dolby ATOMOS (7.1.4ch) 方式や8K放送技術としてNHKが開発を進める22.2chサラウンド方式の両方をフル規格にて再生できます. これら両サラウンド方式に、西浦研のオリジナル技術である「音像プラネタリウム方式」(超音波技術を応用した音像構築方式)を取り入れることで、全く新しい音環境の創造を目指しています. 将来的には、ハイレゾ音源の考え方を空間に拡張し、超臨場音空間の構築に挑戦する計画です.

オーディオスポット ある空間にのみ音を伝え, それ以外 の場所には音をゼロにするような

音のスポットライト(オーディオスポット)を実現します. 従来の直線的なオーディオスポットに加えて, 空間のある 1 点でのみ音を再生可能な極小領域オーディオスポット技術の開発にも成功しました. 本研究成果の応用例として, 壁で騒音などを遮音することが困難な状況において, 音のカーテンとして減音する役割を担うことができます. 西浦研究室では, さらにこの技術を拡張することで, 空間に浮かび上がるホログラムの音版である「音像ホログラム」の構築にも挑戦しています.

<mark>光レーザーマイ</mark>クロホン&ビジュアルマイクロホン

音によって引き起こされる振動物にレーザー光を照射して、ハイスピードカメラでレーザー光の振動を読み取ることで音を検知する仕組みが「光レーザーマイクロホン」です。この技術は、カメラで音を獲得できることから、マイクロホン周辺に騒音があっても高品質な音を受音できます。原理的には、レーザー光が届く範囲であれば、遠く離れた音も受音できるため、様々な応用が期待できます。さらに周囲に振動物がなくても、人間の喉にレーザー光を照射すれば、遠く離れた人の声も受音できるため、マイクロホンの活躍の幅が一気に広がります。現在「会話ロボットの耳」としても実用化を進めており、レーザー光を使わずにカメラだけで振動を読み取り、音を抽出可能なビジュアルマイクロホンの実現に向けて研究を進めています。

知的音響センサー&音環境認識

複数のマイクロホンで受音し た信号を解析し、音源の発生

時刻・区間・方位・位置・内容など推定することで、音空間をテキスト(文字)にてアーカイブ化する音場トランスクリプションシステムや、音信号に基づきビデオカメラやその他機器を制御可能な音響セキュリティーシステムの開発を行っています。さらにロボット聴覚に関する研究も行っており、人間の聴覚メカニズムを参考に人間の聴覚機能を超える知的音響センサーの実現を目指して研究しています。近年は、音信号から現在の音響イベントを推定する音環境認識技術も研究しています。本技術は、遠隔での見守りシステムへの応用が期待できます。

快音化・アクティブノイズコントロール

生活空間において騒音を減らすことは永遠の課題ですが,

西浦研究室では従来の騒音低減技術であるANC (アクティブノイズコントロール) に加え、聴覚マスキングの考え方を応用した快音化技術を研究しています。ANCは音で騒音そのものを打ち消す技術であり、我々は車両騒音や工場騒音など様々な騒音へANCシステムを適用することを目指しています。それに対して、快音化技術は騒音を減らすのではなく制御音を加えて聴覚的に気にならないようにする技術であり、ANCシステムでの低減が困難である日常生活の騒音(歯科治療音など衝突系の騒音、乳幼児の泣き声など)を対象とした不快感低減を研究しています。さらに、ANCシステムと快音化技術を組み合わせた新たな騒音抑圧システムを研究し、喧噪感の少ない快音空間を目指しています。

